

Fig. 3. The structure of $\mathrm{ZnF}(\mathrm{OH})$ projected along c . The z coordinates of the Zn atoms are given. The unit cell is indicated with dashed lines.
hydrogen bonds $\mathrm{O} \cdots \mathrm{F}$ in $\mathrm{CdF}(\mathrm{OH})(2.81 \AA)$ are weaker than those in $\mathrm{HgF}(\mathrm{OH})(2.52 \AA)$ and in $\mathrm{InO}(\mathrm{OH})(\mathrm{O} \ldots \mathrm{O} 2 \cdot 54 \AA)$.
$\mathrm{CdF}(\mathrm{OH})$ differs from both CdF_{2}, with the fluorite $\left(\mathrm{CaF}_{2}\right)$ structure, and the layer structures $\mathrm{CdCl}(\mathrm{OH})$ (Hoard \& Grenko, 1934) and $\mathrm{Cd}(\mathrm{OH})_{2}$ (Natta, 1928). ZnF_{2} has the rutile structure, but $\mathrm{ZnF}(\mathrm{OH})$ (Volkova, Samarets, Polishchuk \& Laptash, 1978), shown in Fig. 3 , has the diaspore $[\mathrm{AlO}(\mathrm{OH})]$ structure (Busing \& Levy, 1958), which is of the rutile type, but with the columns of octahedra doubled.

I thank Drs K. Aurivillius and H. Nyman for valuable discussions. This investigation was supported by the Swedish Natural Science Research Council.

References

Aurivillius, K. \& Stålhandske, C. (1979). To be published.
Bever, A. K. \& Nieuwenkamp, W. (1935). Z. Kristallogr. 90, 374-376.
Buerger, M. J. (1937). Z. Kristallogr. 97, 504-513.
Busing, W. R. \& Levy, H. A. (1958). Acta Crysi. 11, 798803.

Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phy's. 53, 1891-1898.
Doyle, P. A. \& Turner, P. S. (1968). Acta Cryst. A24, 390-397.
Feitknecht, W. \& Bucher, H. (1943). Helr. Chim. Acta, 26, 2177-2196.
Grdenić, D. \& Sikirica, M. (1973). Inorg. Chem. 12, 544546.

Hoard, J. L. \& Grenko. J. D. (1934). Z. Kristallogr. 87, 110-119.
Lehmann, M. S., Larsen. F. K., Poulsen, F. R., Christensen, A. N. \& Rasmussen. S. E. (1970). Acta Chem. Scand. 24, 1662-1670.
Natta, G. (1928). Gazz. Chim. Ital. 58, 344-358.
Stålhandske, C. (1979). Acta Ciy'sı. B35, 949-951.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phy's. 42, 3175-3187.

Volkova, L. M., Samarets, L. V., Polishchuk, S. A. \& Laptash, N. M. (1978). Kristallografiya, 23, 951-955.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.
Zadneprovski, G. M., Kaidalova. T. A. \& Polishchú, S. A. (1971). J. Struct. Chem. 12, 307-308.

The Structure of Trieuropium Tetraarsenide*

By Y. Wang, L. D. Calvert, \dagger M. L. Smart, J. B. Taylor and E. J. Gabe
National Research Council of Canada, Ottawa, Canada K1A 0R9

(Received 21 November 1978; accepted 9 May'1979)

Abstract. $\mathrm{Eu}_{3} \mathrm{As}_{4}$, orthorhombic, $F d d 2, \quad a=$ 14.6419 (7), $b=17.6357$ (5), $c=5.8866$ (2) \AA A,$U=$ $1520 \AA^{3}, \mathrm{FW}=755 \cdot 6, D_{m}=6 \cdot 42, Z=8, D_{x}=6 \cdot 60$ $\mathrm{Mg} \mathrm{m}{ }^{-3}, \mu\left(\right.$ Mo $K(r)=42.7 \mathrm{~mm}^{-1}, F(000)=2568$. Diffractometer data gave $R=3.8 \%$ for 1800 independent observed $h k l$, for the model described below, when refined by full-matrix least-squares procedures. The structure consists of a continuous network of $\left\lfloor\mathrm{Eu}_{6}\right\rfloor$ trigonal prisms. Two-thirds of the prisms contain As atoms which form As_{4} chains (As-As $=2.47,2.56 \AA$, As-As-As $=115.9^{\circ}$) and thus the structure can be considered to be polyanionic. Both Eu atoms are 16 -

[^0]0567-7408/79/092186-03\$01.00
coordinated (to 8 Eu and 8 As) with average distances $\mathrm{Eu}-\mathrm{Eu}=4 \cdot 19$ and $\mathrm{Eu}-\mathrm{As}=3 \cdot 19 \AA$, consistent with metallic Eu^{2+}.

Introduction. This study was undertaken to characterize a new phase in the Eu-As system (Ono, Hui, Despault, Calvert \& Taylor, 1971; Taylor, Calvert, Utsunomiya, Wang \& Despault, 1978) which had a composition in the range 43-45 at. \% Eu. Intensity data were collected on a four-circle computer-controlled diffractometer with graphite-monochromated Mo Ka radiation ($\lambda=0.70926 \AA$) using local programs (for details see Wang, Gabe, Calvert \& Taylor, 1976; Larson \& Gabe, 1978). The crystal used was a fragment $0.1 \times 0.04 \times 0.04 \mathrm{~mm}$ from an $\mathrm{Eu}-\mathrm{As}$ alloy © 1979 International Union of Crystallography
of composition ~ 50 at. \% Eu which had been melted at 1373 K and slowly cooled to allow the peritectic formation of crystals. The space group was determined from precession photographs ($h k l$ with $h+k, k+l=$ $2 n ; 0 k l$ with $k+l=4 n ; h 0 l$ with $l+h=4 n$). The lattice parameters were obtained by centring 54 reflections with 2θ in the range $57-75^{\circ}$. Three sets of reflections $h k l, \bar{h} \bar{k} l$ and $\bar{h} \bar{k} l$ (with $2 \theta \leq 80^{\circ}$) were collected with a $\theta / 2 \theta$ scan using the profile-analysis technique (Grant \& Gabe, 1978). The scan range was varied as a function of $\theta\left(\right.$ range $\left.=1.4^{\circ}+0.7^{\circ} \tan \theta\right)$ to account for wavelength dispersion; 3810 measurements were made equivalent to 2376 independent reflections, of which 1800 were taken as observed ($I \geq$ $2 \sigma I)$; these were corrected for Lorentz, polarization and absorption effects (Gabe \& O'Byrne, 1970). Transmission coefficients ranged from $0 \cdot 22$ to 0.33 . Equivalent sets of reflections were averaged $(\langle\Delta I\rangle /\langle I\rangle=2 \%)$. The structure was refined, with allowance for anomalous dispersion and extinction ($g=2.97 \times 10^{-7}$), by anisotropic full-matrix least squares to $R_{1}=0.038$ and $R_{2}=0.042$, where $R_{1}=\left(\sum \Delta F / \sum F_{0}\right)$ and $R_{2}=$ $\left(\sum w|\Delta F|^{2} / \sum w F_{o}^{2}\right)^{1 / 2}$, starting from Eu coordinates derived from a Patterson map. The enantiomorphic form was tested by reversing the $f^{\prime \prime}$ contribution; the result showed no significant difference.

The final difference Fourier map contained no significant detail. A microprobe analysis of the crystal used

Table 1. Positional parameters $\left(\times 10^{4}\right)$

	x	y	z
$\mathrm{Eu}(1)$	0	0	0
$\mathrm{Eu}(2)$	$9979(1)$	$1666(1)$	$-4732(2)$
$\operatorname{As}(1)$	$847(1)$	$1697(1)$	$240(9)$
$\operatorname{As}(2)$	$4127(1)$	$-31(1)$	$-19(6)$

Fig. 1. A model of the $E u_{3} \mathrm{As}_{4}$ structure viewed from a point close to the c axis in the $b c$ plane; the a axis is approximately vertical. Columns parallel to c are joined to form sheets which share triangular faces leaving empty prisms between sheets. The mode of sharing is emphasized by drawing in the hidden lines in two polyhedra (outlined by heavy lines), one left-handed and one right-handed.
(Owens, 1978) gave $\mathrm{Eu}=60.36$ (30), $\mathrm{As}=39.64$ (20) weight \% (calc. for $\mathrm{Eu}_{3} \mathrm{As}_{4}, 60.33$ and 39.67%). The final parameters are given in Table 1 and interatomic distances in Table 2.* An indexed powder pattern is given by Ono, Hui, Despault, Calvert \& Taylor (1971).

Discussion. The structure (Fig. 1) consists of a spacefilling network of triangular prisms of Eu atoms, in which two-thirds of the prisms contain As atoms close to their centres. The prisms share rectangular faces in two distinct ways, in which the 'trigonal axes' of adjacent prisms are either parallel or perpendicular (Fig. 2), thus forming enantiomorphic polyhedra. The detailed arrangement can be visualized from Fig. 2 where it can be seen that the twofold axes, which are perpendicular to the $\mathrm{As}(2)-\mathrm{As}(2)$ bonds, lie along the face diagonals of the central pair of prisms forming the enantiomorphic unit, whence it follows that $c=5.89 \AA$ $\sim \sqrt{ } 2 \times$ the average $\mathrm{Eu}-\mathrm{Eu}$ distance $=1.414 \times 4.19$ $=5.93 \AA$. The details of face and edge sharing between prisms can be deduced from a comparison of Figs. 1 and 2.

[^1]

Fig. 2. A projection of the $E u_{3} \mathrm{As}_{4}$ structure onto (001). Two unit cells are outlined: in the lower cell z coordinates $(\times 100)$ of the atoms comprising two complete enantiomorphic polyhedra are given, two As_{4} chains are outlined and representative aloms are labelled. A perspective view of two polyhedra is superimposed on the upper cell (from which some atoms are omitted). (Note that the angles and distances in the perspective view are not directly comparable to those in the projection.)

Table 2. Interatomic distances (\AA)

$\mathrm{Eu}(1)-2 \mathrm{As}(1)$	3.104 (3)	$\mathrm{As}(1)-\mathrm{As}(2)$	2.471 (4)
2As(1)	$3 \cdot 243$ (2)	$\mathrm{Eu}(1)$	3.104 (3)
2As(2)	$3 \cdot 199$ (4)	$\mathrm{Eu}(1)$	$3 \cdot 243$ (2)
2As(2)	$3 \cdot 220$ (3)	Eu(2)	3.130 (2)
2Eu(2)	4.049 (2)	$\mathrm{Eu}(2)$	3.185 (3)
2Eu(2)	4.131 (1)	$\mathrm{Eu}(2)$	3.191 (5)
2Eu(2)	$4 \cdot 272$ (1)	$\mathrm{Eu}(2)$	$3 \cdot 222$ (5)
2Eu(2)	4.295 (1)		
$\mathrm{Eu}(2)-\mathrm{As}(1)$	$3 \cdot 130$ (2)	$\mathrm{As}(2)-\mathrm{As}(1)$	2.471 (5)
As(1)	3.185 (3)	As(2)	2.559 (3)
As(1)	3.191(5)	Eu(1)	3.199 (3)
As(1)	$3 \cdot 222$ (5)	Eu(1)	$3 \cdot 220$ (3)
As(2)	3.138(2)	$\mathrm{Eu}(2)$	3.138(2)
As(2)	3.171 (2)	Eu(2)	3.171 (2)
As(2)	3.198 (2)	$\mathrm{Eu}(2)$	3.198(2)
As(2)	$3 \cdot 247$ (2)	$\mathrm{Eu}(2)$	$3 \cdot 247$ (2)
Eu(1)	4.049 (2)		
$\mathrm{Eu}(1)$	4.131 (1)		
$\mathrm{Eu}(1)$	$4 \cdot 272$ (1)		
$\mathrm{Eu}(1)$	4.295 (1)		
$2 \mathrm{Eu}(2)$	$4 \cdot 162$ (2)		
$2 \mathrm{Eu}(2)$	4.209 (1)		

The As atoms have seven and eight neighbours, respectively (Table 2) while the Eu atoms are 16 coordinated. The As-As distances of 2.47 and $2.56 \AA$ are comparable with those in metallic arsenic (2.516 \AA A).

The As atoms within a polyhedron form a 'discrete' four-membered chain, with As-As-As angles of $115.9(1)^{\circ}$. This structural grouping appeared to be unique for arsenic when first reported (Smart \& Calvert, 1972). Discrete four-membered chains had been earlier predicted for polyanions with an average anion coordination of $\frac{3}{2}$ li.e. $m=4, C_{a}=\frac{3}{2}$ (Hulliger \& Mooser, 1965, Table 10)l, though not then observed. The isostructural $\mathrm{Sr}_{3} \mathrm{As}_{4}$ has As-As $=2.48$, $2.55 \AA$ and As-As-As $=116^{\circ}$ (Deller \& Eisenmann, 1977). NdAs ${ }_{2}$ (Wang, Heyding, Gabe, Calvert \& Taylor, 1978) has As_{4} chains with $\mathrm{As}-\mathrm{As}=2.48$, $2 \cdot 50 \AA$ and As-As-As $=104 \cdot 3^{\circ}$. A mixture of fourand eight-membered chains is known for $\mathrm{Ca}_{2} \mathrm{As}_{3}$ (Deller \& Eisenmann, 1976) where the four-membered chains have As-As distances of 2.53 and $2.49 \AA$, and $\mathrm{As}-\mathrm{As}-\mathrm{As}=110 \cdot 2^{\circ}$.

Application of the general valence rule of Pearson (1972) based on the presence of an As_{4} polyanion shows that the rule is obeyed but the structure has a
continuous network of $\mathrm{Eu}-\mathrm{Eu}$ bonds with typical metallic values. The average observed $\mathrm{Eu}-\mathrm{Eu}$ distance in $\mathrm{Eu}_{3} \mathrm{As}_{4}(4 \cdot 19 \AA)$ indicates the presence of Eu^{2+} [predicted for $\mathrm{Eu}^{3+} 3.65$, for $\mathrm{Eu}^{2+} 4.09 \AA$; observed at $4.2 \AA$ in $\mathrm{Eu}_{2} \mathrm{As}_{2}$ (Wang, Gabe, Calvert \& Taylor, 1977) where Eu^{2+} is known to be present from magnetic datal. Although there are 48 essentially similar-sized triangular prisms in the unit cell, only 32 of these contain As atoms, and there is no apparent disordering of the As atoms among the available sites. If the 16 prisms were each to contain a complete B or C atom, this would give a structure of composition $A B_{2}$ or $A_{3} B_{4} C_{2}$ with 72 atoms per unit cell. Apparently no structure of this type is known at present.

We wish to thank Mr D. R. Owens of the Mineralogy Section, Physical Sciences Laboratory, CANMET, for the difficult microprobe analysis.

References

Deller, K. \& Eisenmann, B. (1976). Z. Naturforsch. Teil. B, 31, 1023-1027.
Deller, K. \& Eisenmann, B. (1977). Z. Naturforsch. Teil. B, 32, 1368-1370.
Gabe, E. J. \& O'Byrne, T. (1970). Department of Energy, Mines and Resources, Rescarch Report R231, Ottawa.
Grant, D. F. \& Gabe, E. J. (1978). J. Appl. Cryst. 11, 114120.

Hulliger, F. \& Mooser, E. (1965). Prog. Solid State Chem. 2, 300-377.
Larson, A. C. \& Gabe, E. J. (1978). Computing in Crystallography, pp. 81 89. Delft Univ. Press.
Ono, S., Hui, F. L., Despault, J. G., Calvieri, L. D. \& TAYLOR, J. B. (1971). J. Less-Common Mel. 25, 287-294.
Owens, D. R. (1978). Physical Sciences Laboratory, Report M-2948, June 30.
Pearson, W. B. (1972). The Crystal Chemistry and Physics of Metals and Alloys, p. 202. Toronto: John Wilcy.
Smart, M. L. \& Calvirt, L. D. (1972). Am. Crystallogr. Assoc. Meet. Albuquerque, April 3-7, Abstr. K4, p. 61.
Taylor, J. B., Calvert, L. D., Utsunomiya, I., Wang;, Y. \& Despault, J. G. (1978). J. Less-Common Met. 57, 3951.

Wang, Y., Gabe, E. J., Calviert, L. D. \& IAyi.or, J. B. (1976). Acta Cryst. B32, 1440-1445.

Wang, Y., Gabe, E. J., Calvert, L. D. \& IAyi.or, J. B. (1977). Acta Cryst. B33, 131-133.

Wang, Y., Heyding, R. D., Gabe, E. J., Cal.vi:ri, L. D. \& Taylor, J. B. (1978). Acta Cryst. B34, 1959-1961.

[^0]: * NRCC No. 17543.
 \dagger To whom correspondence should be addressed.

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34449 (11 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

